什么是初等函数(初等函数的定义是什么)
初等函数定义:由常数和基本初等函数经过有限次四则运算和有限次函数复合步骤所构成并可用一个式子表示的函数。 初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减...,以下是对"什么是初等函数"的详细解答!
文章目录
什么是初等函数
初等函数定义:由常数和基本初等函数经过有限次四则运算和有限次函数复合步骤所构成并可用一个式子表示的函数。
初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个解析式表示的函数。
简介
幂函数定义:一般地,形如y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。一般形式如下:(α为常数,且可以是自然数、有理数,也可以是任意实数或复数。)
指数函数定义:指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。一般形式如下:(a>0, a≠1)
对数函数定义:一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。一般形式如下:(a>0, a≠1,x>0,特别当α=e时,记为y=ln x)
初等函数的定义是什么
什么是基本初等函数?什么是初等函数?
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:
正弦函数 y =sinx
余弦函数 y =cosx
正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx(也记成y =ctgx)
正割函数 y =secx
余割函数 y =cscx
(6)反三角函数:
反正弦函数 y =arcsinx
反余弦函数 y =arccosx
反正切函数 y =arctanx
反余切函数 y =arccotx
(反正割函数、反余割函数一般不用)
所谓初等函数就是由基本初等函数经过有些次的四则运算和复合而成的函数。
什么是基本初等函数
基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。
1、幂函数
一般地,形如y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。
2、指数函数
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
3、对数函数
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
4、三角函数
三角函数是数学中常见的一类关于角度的函数。也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
5、反三角函数
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。