加菲尔德勾股定理证法(加菲尔德的勾股定理)
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定...,以下是对"加菲尔德勾股定理证法"的详细解答!
文章目录
加菲尔德的勾股定理
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理的证明方法!
以a、b 为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于. 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于.
∴ .
∴ .
加菲尔德证明勾股定理的方法
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理有多少种证明方法
关于勾股定理有多少种证明方法如下:
勾股定理(毕达哥拉斯定理)有许多证明方法,路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。一个定理越是基础,越是可以从不同的路径达到。
下面这个证明可能算不上漂亮,但它的身世很有趣,因为它并非出自数学家之手,相反,提出它的人干的是可能最世俗、离象牙塔最远的工作——他是个政客。这是第十二任美国总统加菲尔德1863年发表在一份期刊上的勾股定理的梯形证明:
直角三角形ABC与三角形BDE全等,将它们如图平放,构成一个梯形AEDC。因为两个直角三角形是平放的,C,B,D共线,所以 ∠CBD = 180°而 ∠β + ∠EBD = ∠β + ∠α = 90°, 可知∠ABE = 90°梯形面积 = 三个三角形面积相加1/2 * (a+b)²= 1/2 * c² + 1/2 *ab + 1/2 * ab化简得 a²2 + b²= c²
至于漂亮的证明,如果说简洁就是美的话,那么越简洁的证明越美,无言的证明就是最美的。下面这个证明接近于无言。用四个阴影三角形拼成一个新正方形(右)后,新正方形面积与左边的原正方形相等, a² + b² = c²一目了然。