毕达哥拉斯证明勾股定理的方法(勾股定理的证明方法)
简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两衫袜雹个正方形。 发现四个直角三或帆角...,以下是对"毕达哥拉斯证明勾股定理的方法"的详细解答!
文章目录
勾股定理的证明方法
简单的勾股定理的证明方法如下:
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两衫袜雹个正方形。
发现四个直角三或帆角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。
所以可以看出以上两个大正方形面积相等。 列出式子可得:
拓展资料:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最好模重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
毕达哥拉斯勾股定理的证明是什么
人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一。在中国,商朝时期的商高提出了勾三股四弦五的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
基本信息
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了勾三股四弦五的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派。
勾股定理有多少种证明方法
关于勾股定理有多少种证明方法如下:
勾股定理(毕达哥拉斯定理)有许多证明方法,路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。一个定理越是基础,越是可以从不同的路径达到。
下面这个证明可能算不上漂亮,但它的身世很有趣,因为它并非出自数学家之手,相反,提出它的人干的是可能最世俗、离象牙塔最远的工作——他是个政客。这是第十二任美国总统加菲尔德1863年发表在一份期刊上的勾股定理的梯形证明:
直角三角形ABC与三角形BDE全等,将它们如图平放,构成一个梯形AEDC。因为两个直角三角形是平放的,C,B,D共线,所以 ∠CBD = 180°而 ∠β + ∠EBD = ∠β + ∠α = 90°, 可知∠ABE = 90°梯形面积 = 三个三角形面积相加1/2 * (a+b)²= 1/2 * c² + 1/2 *ab + 1/2 * ab化简得 a²2 + b²= c²
至于漂亮的证明,如果说简洁就是美的话,那么越简洁的证明越美,无言的证明就是最美的。下面这个证明接近于无言。用四个阴影三角形拼成一个新正方形(右)后,新正方形面积与左边的原正方形相等, a² + b² = c²一目了然。